There are new versions of future and future.apply - your friends in the parallelization business - on CRAN. These updates are mostly maintenance updates with bug fixes, some improvements, and preparations for upcoming changes. It’s been some time since I blogged about these packages, so here is the summary of the main updates this far since early 2020: future: values() for lists and other containers was renamed to value() to simplify the API [future 1.

Continue reading

No dogs were harmed while making this release future 1.15.0 is now on CRAN, accompanied by a recent, related update of future.callr 0.5.0. The main update is a change to the Future API: resolved() will now also launch lazy futures Although this change does not look much to the world, I’d like to think of this as part of a young person slowly finding themselves. This change in behavior helps us in cases where we create lazy futures upfront;

Continue reading

A commonly asked question in the R community is: How can I parallelize the following for-loop? The answer almost always involves rewriting the for (...) { ... } loop into something that looks like a y <- lapply(...) call. If you can achieve that, you can parallelize it via for instance y <- future.apply::future_lapply(...) or y <- foreach::foreach() %dopar% { ... }. For some for-loops it is straightforward to rewrite the code to make use of lapply() instead, whereas in other cases it can be a bit more complicated, especially if the for-loop updates multiple variables in each iteration.

Continue reading

New versions of the following future backends are available on CRAN: future.callr - parallelization via callr, i.e. on the local machine future.batchtools - parallelization via batchtools, i.e. on a compute cluster with job schedulers (SLURM, SGE, Torque/PBS, etc.) but also on the local machine future.BatchJobs - (maintained for legacy reasons) parallelization via BatchJobs, which is the predecessor of batchtools These releases fix a few small bugs and inconsistencies that were identified with help of the future.

Continue reading

future 1.8.0 is available on CRAN. This release lays the foundation for being able to capture outputs from futures, perform automated timing and memory benchmarking (profiling) on futures, and more. These features are not yet available out of the box, but thanks to this release we will be able to make some headway on many of the feature requests related to this - hopefully already by the next release.

Continue reading

Author's picture

Henrik Bengtsson

MSc CS | PhD Math Stat | Associate Professor | R Foundation | R Consortium

Associate Professor