Future: A Simple, Extendable, Generic
Fromework for Parallel Processing in R

Henrik Bengtsson W @ @HenrikBengtsson
University of California, San Francisco) .Hen”kBengtSSOH
R Foundation, R Consortium N\ jottr.org

Edmonton R User Group Meetup on 2023-05-22

We parallelize software for various reasons

Parallel & distributed processing can be used to:

e speed up processing (wall time)

e |ower memory footprint (per machine)

e avoid data transfers (compute where data lives)

e Otherreasons, e.g. asynchronous Ul

We parallelize software for various reasons

We may choose to parallelize on:

Your personal laptop or work desktop computer (single user)
A shared powerful computer (multiple users)
Across many computers, e.g. in the office or in the cloud

High-performance compute (HPC) cluster (multiple users) with
a job scheduler, e.g. Slurm, Son of Grid Engine (SGE)

History - What's Already Available in R?

R comes with built-in parallelization

library(DNAseq)

fq <- c("a.fq", "b.fq", "c.fq") # In: FASTQ files
bam <- lapply(fq, align) # 3 hours

[1] "a.bam" "b.bam™ "c.bam" # Out: BAM files

This can be parallelized on Unix & macOS (becomes non-parallel on Windows) as:

library(parallel)
bam <- mclapply(fq, align, mc.cores = 3) # 1 hour

To parallelize also on Windows, we can do:

library(parallel)

workers <- makeCluster(3)

clusterEvalQ(workers, library(DNAseq))

bam <- parLapply(fq, align, cl = workers) # 1 hour

Things we need to be aware of

mclapply() - magic with problems

Pros:
e mclapply() works similarly to lapply()
e mclapply() comes with all R installations
* no need to worry about global variables and loading packages

Cons:
 forked processing => not supported on MS Windows
» forked processing => unstable with multi-threaded code & GUlIs,
e.g. may core dump RStudio
e errors have to be handled with great care

), Use forked processing with carel

R Core & mclapply() author Simon Urbanek (on R-devel, 2020):

‘Do NOT use mcparallel () in packages except as a non-default option
that user can set ... Multicore is intended for HPC applications that need
fo use many cores for computing-heavy jobs, but it does not play well with
RStudio and more importantly you [as the developer] don't know the
resource available so only the user can tell you when it's safe to use.”

https://stat.ethz.ch/pipermail/r-devel/2020-April/079384.html

parLapply() - takes some efforts

Pros:
e parLapply() works just like lapply ()
e parLapply() comes with all R installations
e parLapply() works on all operating systems

Cons:
e Requires manually loading of packages on workers, e.g.
clusterEvalQ(workers, library(DNAseq))
* Requires manually exporting globals to workers, e.g.
clusterkExport(workers, c("varA", "varB"))
* errors have to be handled with care

Design patterns found in packages

10

My “align them all” function

align_all <- function(fq) {
lapply(fq, align)
}

> fq <- c¢("a.fq", "b.fq", "c.fq")
> bam <- align_all(fq)

> bam

[1] "a.bam" "b.bam" "c.bam"

11

vl. A first attempt on parallel support

align all <- function(fq, parallel = FALSE) {

if (parallel) {

bam <- mclapply(fq, align, mc.cores
} else {

bam <- lapply(fq, align)
}

bam

}

> bam <- align_all(fq, parallel = TRUE)
> bam
[1] "a.bam" "b.bam" "c.bam"

availableCores())

12

v2. A slightly better approach

align all <- function(fq, parallel = FALSE) {

if (parallel) {
bam <- mclapply(fq, align) # Let user decide on cores! ¢=

} else {
bam <- lapply(fq, align)
}

bam

> options(mc.cores = 4)
> bam <- align_all(fq, parallel = TRUE)

13

v3. Yet another alternative

align all <- function(fg, ncores = 1) {
if (ncores > 1) {
bam <- mclapply(fq, align, mc.cores
} else {
bam <- lapply(fq, align)
}

bam

> bam <- align_all(fq, ncores = 4)

ncores)

14

v4. Support also MS Windows

align_all <- function(fq, ncores = 1) {
if (ncores > 1) {
if (.Platform$0S.type == "windows") {
workers <- makeCluster(ncores)
on.exit(stopCluster(workers))
clusterEvalQ(workers, library(DNAseq))
clusterExport(workers, "some_global")
bam <- parLapply(fq, align, cl = workers)
} else {
bam <- mclapply(fq, align, mc.cores = ncores)
}
} else {
bam <- lapply(fq, align)
}

bam

15

v99: Phew ... will this do?

align_all <- function(fq, parallel = "none") {
if (parallel == "snow") {
workers <- getDefaultCluster()
clusterEvalQ(workers, library(DNAseq)) What’g m
clusterExport(workers, "some_global") 9!
bam <- parLapply(fq, align, cl = workers)
} else if (parallel == "multicore") { zﬁ
bam <- mclapply(fq, align) ter caverage
} else if (parallel == "clustermq") {
bam <- clustermq::Q(align, fq, how.?
pkgs="DNAseq", export="some_global")
} else if (parallel == ...) {
} else {
bam <- lapply(fq, align)

bam

Welcome to the Future

Parallel frameworks reimplement common ideas

Parallel Map-Reduce APIs

parallel foreach BiocParallel

mclapply(), . .
parLapply(), ... foreach() %dopar%{ ... } bplapply(), ...

I~ =

Common needs, strategies & re-implementations:

Familiar map-reduce functions in a unified API
Multiple parallel backends to choose from
Efficient iteration & chunking

Loading of packages and globals to export
Handling of errors, warnings, and output

18

|dea: Collect common tasks in one place

Parallel Map-Reduce APIs

parallel
mclapply(),

parLapply(), .

foreach BiocParallel
foreach() %dopar%{ ... } bplapply(), ...

.

Future API

Unified low-level API

Multiple parallel backends to choose from
Loading of packages and globals to export
Handling of errors, warnings, and output
Protection against non-exportable globals

“Serves your low-level parallelization tasks
in a robust, standardized, consistent manner”

19

R package: future

e "Write once, run anywhere"

e 100% cross platform

e \Works with any type of parallel backends
o

L

o

. . Dan LaBar
A simple unified API @embiggenData

Easy to install (< 0.5 MiB total)
Very well tested, lots of CPU mileage

“Low friction”:

e automatically exports global variables
e automatically relays output, messages, and warnings
e proper parallel random number generation (RNG)

20

A Future is ...

e A future is an abstraction for a value that will be available later
e The state of a future is either unresolved or resolved
e The value is the result of an evaluated expression

An R assignment: Future API:

vV <- expr f <- future(expr)
v <- value(f)

Friedman & Wise (1976, 1977), Hibbard (1976), Baker & Hewitt (1977)

21

Example: Sum of 1:100

> slow _sum(1:100) # 2 minutes
[1] 5050
> a <- slow sum(1:50) # 1 minute

> b <- slow sum(51:100) # 1 minute
>a+b

[1] 5050

22

Example: Sum of 1:50 and 51:100 in parallel

> library(future)
> plan(multisession) # parallelize on Local computer

s fa <- future(slow_sum(1:50)) # ~@ seconds
> fb <- future(slow sum(51:100)) # ~O0 seconds

> mean(1:3)

[1] 2

> a <- value(fa) # blocks until ready
> b <- value(fb)

>a+b # here at ~1 minute

[1] 5050

User chooses how to parallelize - many options

plan(sequential)
plan(multicore) # uses the mclapply() machinery
plan(multisession) # uses the parLapply() machinery

plan(cluster, workers = c("n1", "n2", "n3"))

plan(cluster, workers = c("n1", "m2.uni.edu", "vm.cloud.org"))
plan(batchtools_slurm) # on a Slurm job scheduler

plan(future.callr::callr) # Locally using callr package

24

Globals automatically identified (9% worry free)

Static-code inspection by walking the abstract syntax tree (AST):

X <- rnorm(n = 100) pryr::ast({ slow_sum(x) })
f <- future({ slow sum(x) }) \- °{
\ / \- ()
| \- “slow_sum
\- X

=> globals & packages identified and exported to the worker:
- slow_sum() - a function (also searched recursively)
- X - a numeric vector of length 100

Comment: Globals & packages can also be specified manually;
f <- future({ slow sum(x) }, globals = c("slow_sum", "x"))

25

Other frameworks need manual exports

With other parallel frameworks, you have to manually export the globals that
need to be available on the parallel workers, e.g.

library(parallel)

cl <- makeCluster(1)

X <- rnorm(n = 100)

clusterExport(cl, c("slow_sum", "x"))
y <- clusterEvalQ(cl, { slow sum(x) })

Conclusion: This is not needed when using Futureverse for parallelization
(except for rare, corner cases)

26

Building things using the core future blocks

f <- future(expr) # create future
r <- resolved(f) # check 1if done
v <- value(f) # wait & get result

27

A parallel version of lapply()

#' @importFrom future future value
parallel lapply <- function(X, FUN, ...) {
Create futures

fs <- lapply(X, function(x) future(FUN(x, ..

Collect their values
value(fs)

library(DNAseq)
plan(multisession)

bam <- parallel lapply(fq, align)
bam

[1] "a.bam" "b.bam" "c.bam"

Vv VvV VvV VvV

-))

28

Package: future.apply

e Futurized version of base R's 1lapply(), vapply(), replicate(), ...
e ... on all future-compatible backends

e |Load balancing ("chunking")

e Proper parallel random number generation

bam <- lapply(fq, align)

bam <- future lapply(fq, align)

plan(multisession)
plan(cluster, workers = c("n1", "n2", "n3"))
plan(batchtools slurm)

A parallel version of purrr:map)

#° @importFrom purrr map
#' @importFrom future future value
parallel map <- function(.x, .f, ...) {
Create futures
fs <- map(.x, function(x) future(.f(x, ...))
Collect their values
value(fs)

}

> library(DNAseq)

> plan(multisession)

> bam <- parallel map(fq, align)
> bam

[1] "a.bam" "b.bam" "c.bam"

30

Package: furrr (Davis Vaughan)

e Futurized version of purrr's map(), map2(), modify(), ...
e ... on all future-compatible backends

e |Load balancing ("chunking")

e Proper parallel random number generation
bam <- map(fq, align)

bam <- future map(fq, align)

plan(multisession)
plan(cluster, workers = c("n1", "n2", "n3"))
plan(batchtools slurm)

31

Package: doFuture

e ZdofutureX% - a futurized foreach adaptor
e ... on all future-compatible backends

e |Load balancing ("chunking")

e Proper parallel random number generation

bam <- foreach(x = fq) %do% align(x)
bam <- foreach(x = fq) %dofuture’ align(x)

plan(multisession)
plan(cluster, workers = c("n1", "n2", "n3"))
plan(batchtools slurm)

32

Stay with your favorite coding style

Base R style (R & future.apply)
bam <- lapply(fq, align)
bam <- future_lapply(fq, align)

Tidyverse style (purrr & furrr)
bam <- fq |> map(align)
bam <- fq |> future map(align)

Foreach style (foreach & doFuture)
bam <- foreach(x = fq) %do% align(x)
bam <- foreach(x = fq) %dofuture’ align(x)

1/3

33

Stay with your favorite coding style 2/3

Foreach style (classical)

doFuture: :registerDoFuture() # Z%dopar’% to use futures
bam <- foreach(x = fq) %dopar% align(x)

Bioconductor’s BiocParallel

register(DoparParam()) # BiocParallel to use Z%dopar%

doFuture: :registerDoFuture() # Z%dopar’% to use futures
bam <- bplapply(fq, align)

34

Stay with your favorite coding style 3/3

pbapply (since Jan 20623)
bam <- pblapply(fq, align, cl = "future")

35

Recall: User chooses how to parallelize

plan(sequential)
plan(multicore) # uses the mclapply() machinery
plan(multisession) # uses the parLapply() machinery

plan(cluster, workers = c("n1", "n2", "n3"))

plan(cluster, workers = c("n1", "m2.uni.edu", "vm.cloud.org"))
plan(batchtools_slurm) # on a Slurm job scheduler

plan(future.callr::callr) # Locally using callr package

36

Backend package: future.batchtools

plan(future.batchtools: :batchtools slurm)

fq <- dir(pattern = "[.]fq$")
bam <- future_ lapply(fqg, align)

{henrik: ~}$ squeue

Job ID

606411
606638
606641
606643

future_lapply-5
python
future_lapply-6

henrik
bob
henrik

80 files; 200 GB each
1 hour each

Time Use S

46:22:22 R
00:52:05 R
37:18:30 R
00:51:55 R

37

2023: Futureverse widely supported

Parallel Map-Reduce APIs

parallel foreach BiocParallel future.apply,
mclapply(), | foreach()%dopar%{...} ST, furrr, doFuture,
R pbapply, ...
\\/
Future API

e Unified low-level API

e Multiple parallel backends to choose from

e Loading of packages and globals to export

e Handling of errors, warnings, and output

e Protection against non-exportable globals

“Serves your low-level parallelization tasks
in a robust, standardized, consistent manner”

38

Output, Warnings, and Errors

39

Output and warnings behave
consistently for all parallel backends

> X <- c(-1, 10, 30)

>y <- future_lapply(x, function(z) {
message("z = ", z)
log(z)

<= Output relayed from workers

| I | I |
~

N N N
w = 1
o o K

° <= H
Warning message: Warnings are relayed too

In log(z) : NaNs produced

>
40

A, Other frameworks: No output/warnings

> X <- ¢c(-1, 10, 30)
>y <- mclapply(x, function(z) {

message("z = ", z)
log(z)
<= Output and warnings
}) ,
S completely muffled!
> ¢l <- makeCluster(2)
>y <- parLapply(cl, x, function(z) {
message("z = ", z)
log(z) <= Qutput and warnings
}) completely muffled!

41

A Same for foreach w/ doParallel etc.

> X <- ¢c(-1, 10, 30)

> ¢l <- makeCluster(2)

> doParallel::registerDoParallel(cl)

> y <- foreach(z = x) %dopar% {
message("z = ", z)

log(z)
} <= Qutput and warnings

completely muffled!

foreach w/ doFuture works

> X <- ¢c(-1, 10, 30)
>y <- foreach(z = x) %dofuture% {

message("z = ", z)
log(z)
}
z = -1 <= QOutput relayed from workers
z = 10
z = 30
Warning message: <= Warnings are relayed too

In log(z) : NaNs produced
>

43

pbapply: supports futures since Jan 2023

library(pbapply)
plan(multisession)

x <- c(-1, 10, 30)

y <- pblapply(x, function(z) {

vV VvV VvV Vv

message("z = ", z)
log(z)
}, ¢l = "future")
z = -1
z = 10
z = 30

| +++++++++++ A | 100% elapsed=02s
Warning message:
In log(z) : NaNs produced
>

44

Take home: future = 99% worry-free parallelization

"Write once, run anywhere"
Global variables - automatically taken care of

Stdout, messages, warnings, progress - captured and relayed
User can leverage their compute resource, e.g. compute clusters
Atomic building blocks for higher-level parallelization APls

100% cross-platform code
Future proof: will work with
still-to-be-developed backends

45

It's easy to get started @@

It's easy to get started - just try it

Support: https://github.com/HenrikBengtsson/future/discussions
Tutorials: https://www.futureverse.org/tutorials.html

Blog posts: https://www.futureverse.org/blog.html

More features on the roadmap

| love feedback and ideas

W@ @HenrikBengtsson
() HenrikBengtsson

N\ jottrorg

46

https://github.com/HenrikBengtsson/future/discussions
https://www.futureverse.org/tutorials.html
https://www.futureverse.org/blog.html

