
Futureverse:
Profile Parallel Code

@HenrikBengtsson (University of California, San Francisco)
useR! 2022-06-22 (25 mins)

Where
can we
improve?

?
?

? ?

?

This talk was extended from 15 to 25 minutes,
because one presenter couldn’t make our session.

Futureverse: Ecosystem for parallel &
distributed computing in R

Parallel backends:
● parallel / parallelly

(local, remote, MPI, cloud)
● future.callr (local)
● future.batchtools

(HPC job schedulers)
● …

Near-live progress updates:
● progressr

Core API:
● future

Map-reduce API:
● future.apply
● furrr
● doFuture, e.g.

○ foreach
○ plyr
○ BiocParallel

 2

60s: R package ‘future’
● A simple, unifying solution for parallel APIs
● "Write once, run anywhere"
● 100% cross-platform
● Easy to install (< 0.5 MiB total)
● Well tested, lots of CPU mileage, used in production
● Things should “just work”
● Correctness & reproducibility of the highest priorities

https://www.futureverse.org/

 3

https://www.futureverse.org/

Rapid uptake & top-1% most downloaded

 4

future.apply

future

furrr

5

Quick Examples of
Parallelizing with Futures

sequentially

x <- 7

y <- slow(x) # ~ 1 minute

z <- another(x) # ~ 0.5 minute

in parallel

library(future)

plan(multisession)

f <- future(slow(x)) # ~ 1 minute (in background)

z <- another(x) # ~ 0.5 minute
y <- value(f) # => all done ~ 1 minute

60s: Evaluate R in the Background

 6

60s: Parallel Base-R Apply

 7

sequentially
x <- 1:20
y <- lapply(x, slow) # ~ 20 minutes

in parallel
library(future.apply)
plan(multisession) # on 4-core laptop
y <- future_lapply(x, slow) # ~ 5 minutes

60s: Parallel Tidyverse Apply

 8

sequentially
library(purrr)
x <- 1:20
y <- map(x, slow) # ~20 minutes

in parallel
library(furrr)
plan(multisession) # on 4-core laptop
y <- future_map(x, slow) # ~5 minutes

60s: User can parallelize anywhere
sequentially
plan(sequential)

On the local machine
plan(multisession)
plan(multisession, workers = 2)

Ad-hoc cluster of local and remote machines
plan(cluster, workers = c(“pi”, “remote.server.org”))

Via an HPC job scheduler (thousands of workers)
plan(batchtools_slurm)

 9

Futureverse is unique
● Exports “globals” automatically, i.e. objects and functions

that are needed by parallel workers
● Relays output & conditions signaled, i.e. errors, warning,

messages, and standard output
● Built-in statistically sound random numbers
● Near-live progress updates - also from remote workers
● You, as a developer, don’t have to think “parallel workers”

- just which R expressions to parallelize

 10

11

Profiling
the parallel framework

Adding a journaling system
● Log events, e.g. creation,

launching, evaluation,
gathering of results

● Timing information for now
(memory is tricky)

● Work with any parallel backends
● Near-zero overhead if not used
● Tabular raw data
● Textual & graphical presentation

 12

plan(sequential)

f <- future(slow(1))
v <- value(f)

Profiling a sequential future

 13

plan(sequential)

fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)

Profiling two sequential futures

 14

Parallelization comes with overhead

 15

We care about “evaluation”

Not “overhead”

Profiling 1 future with 1 worker
plan(cluster, workers = 1)

f <- future(slow(1))
v <- value(f)

 16

value()future()

plan(cluster, workers = 1)

fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)

Profiling 2 futures with 1 worker

 17

value()future() future()

plan(cluster, workers = 2)

fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)

Profiling 2 futures with 2 workers

 18

plan(cluster, workers = 2); huge <- rnorm(100e6)

fs <- lapply(1:2, function(x) future(slow(x, huge))
vs <- value(fs)

Exporting 800-MB object

 19

sending data

sending data

plan(cluster, workers = 2)

fs <- lapply(1:2, function(x) future(slow_huge_value(x))
vs <- value(fs)

Returning 800-MB object

 20

receiving data

receiving data

Profiling ⇒ Improving Futureverse
On the roadmap:

● caching of large globals on parallel workers
● caching of large globals in a central, shared cache

 21

plan(cluster, workers = 2); huge <- rnorm(100e6)

fs <- lapply(1:4, function(x) future(slow(x, huge))
vs <- value(fs)

No cache: 800-MB export

 22

By design: workers
are cleaned up all
the time

wipe

wipewipe

wipe

With cache: 800-MB export

 23

already cached
on worker

Thank you
More information:

● Website & blog: https://www.futureverse.org
● CRAN: https://cran.r-project.org/package=future
● GitHub: https://github.com/HenrikBengtsson/future
● Twitter: @HenrikBengtsson

Sponsored by:

● Essential Open-Source Software program of
the Chan Zuckerberg Initiative (CZI EOSS #4)

● R Consortium ISC grant (past)

 24

https://www.futureverse.org
https://cran.r-project.org/package=future
https://github.com/HenrikBengtsson/future
https://twitter.com/henrikbengtsson/

