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This talk was extended from 15 to 25 minutes, 
because one presenter couldn’t make our session.



Futureverse: Ecosystem for parallel & 
distributed computing in R

Parallel backends:
● parallel / parallelly

(local, remote, MPI, cloud)
● future.callr (local)
● future.batchtools 

(HPC job schedulers)
● …

Near-live progress updates:
● progressr

Core API:
● future

Map-reduce API:
● future.apply
● furrr
● doFuture, e.g.

○ foreach
○ plyr
○ BiocParallel
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60s: R package ‘future’
● A simple, unifying solution for parallel APIs
● "Write once, run anywhere"
● 100% cross-platform
● Easy to install (< 0.5 MiB total)
● Well tested, lots of CPU mileage, used in production
● Things should “just work”
● Correctness & reproducibility of the highest priorities

https://www.futureverse.org/ 
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https://www.futureverse.org/


Rapid uptake & top-1% most downloaded
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future.apply

future

furrr
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Quick Examples of 
Parallelizing with Futures



# sequentially

x <- 7

y <- slow(x)           # ~ 1 minute

z <- another(x)        # ~ 0.5 minute

# in parallel

library(future)

plan(multisession)                                     

f <- future(slow(x))   # ~ 1 minute (in background)    

z <- another(x)        # ~ 0.5 minute
y <- value(f)          # => all done ~ 1 minute        

60s: Evaluate R in the Background
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60s: Parallel Base-R Apply
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# sequentially
x <- 1:20
y <- lapply(x, slow)          # ~ 20 minutes

# in parallel
library(future.apply)
plan(multisession)            # on 4-core laptop
y <- future_lapply(x, slow)   # ~ 5 minutes



60s: Parallel Tidyverse Apply
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# sequentially
library(purrr)
x <- 1:20
y <- map(x, slow)          # ~20 minutes

# in parallel
library(furrr)
plan(multisession)         # on 4-core laptop
y <- future_map(x, slow)   # ~5 minutes



60s: User can parallelize anywhere
# sequentially
plan(sequential)

# On the local machine
plan(multisession)
plan(multisession, workers = 2)

# Ad-hoc cluster of local and remote machines
plan(cluster, workers = c(“pi”, “remote.server.org”))

# Via an HPC job scheduler (thousands of workers)
plan(batchtools_slurm)
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Futureverse is unique
● Exports “globals” automatically, i.e. objects and functions 

that are needed by parallel workers
● Relays output & conditions signaled, i.e. errors, warning, 

messages, and standard output
● Built-in statistically sound random numbers
● Near-live progress updates - also from remote workers
● You, as a developer, don’t have to think “parallel workers” 

- just which R expressions to parallelize
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Profiling 
the parallel framework



Adding a journaling system
● Log events, e.g. creation, 

launching, evaluation, 
gathering of results

● Timing information for now
(memory is tricky)

● Work with any parallel backends
● Near-zero overhead if not used
● Tabular raw data
● Textual & graphical presentation

 12



plan(sequential)

f <- future(slow(1))
v <- value(f)

Profiling a sequential future
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plan(sequential)

fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)

Profiling two sequential futures
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Parallelization comes with overhead
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We care about “evaluation”

Not “overhead”



Profiling 1 future with 1 worker
plan(cluster, workers = 1)

f <- future(slow(1))
v <- value(f)
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value()future()



plan(cluster, workers = 1)

fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)

Profiling 2 futures with 1 worker
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value()future() future()



plan(cluster, workers = 2)

fs <- lapply(1:2, function(x) future(slow(x))
vs <- value(fs)

Profiling 2 futures with 2 workers
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plan(cluster, workers = 2); huge <- rnorm(100e6)

fs <- lapply(1:2, function(x) future(slow(x, huge))
vs <- value(fs)

Exporting 800-MB object
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sending data

sending data



plan(cluster, workers = 2)

fs <- lapply(1:2, function(x) future(slow_huge_value(x))
vs <- value(fs)

Returning 800-MB object
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receiving data

receiving data



Profiling ⇒ Improving Futureverse
On the roadmap:

● caching of large globals on parallel workers
● caching of large globals in a central, shared cache
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plan(cluster, workers = 2); huge <- rnorm(100e6)

fs <- lapply(1:4, function(x) future(slow(x, huge))
vs <- value(fs)

No cache: 800-MB export

 22

By design: workers 
are cleaned up all 
the time

wipe

wipewipe

wipe



With cache: 800-MB export
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already cached 
on worker



Thank you
More information:

● Website & blog: https://www.futureverse.org 
● CRAN: https://cran.r-project.org/package=future 
● GitHub: https://github.com/HenrikBengtsson/future 
● Twitter: @HenrikBengtsson

Sponsored by:

● Essential Open-Source Software program of
the Chan Zuckerberg Initiative (CZI EOSS #4)

● R Consortium ISC grant (past)
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