
@HenrikBengtsson
HenrikBengtsson
jottr.org

Future: Simple Parallel and
Distributed Processing in R
Henrik Bengtsson
University of California
San Francisco

Acknowledgments:
● Organizers, Volunteers, and Sponsors
● R Core, CRAN, devels, and users!
● R Consortium
● Gábor Csárdi

We parallelize software for various reasons

Parallel & distributed processing can be used to:

● speed up processing (wall time)

● lower memory footprint (per machine)

● Other reasons, e.g. asynchronous UI

2

Concurrency in R
X <- list(a=1:50, b=51:100, c=101:150)

y <- list()
for (name in names(X)) {
 y[[name]] <- sum(X[[name]])
}

y <- lapply(X, sum)

y <- list()
y$a <- sum(X$a)
y$b <- sum(X$b)
y$c <- sum(X$c)

3

R comes with built-in parallelization
X <- list(a=1:50, b=51:100, c=101:150)
y <- lapply(X, slow_sum) # 3 minutes

To parallelize also on Windows, we can do:

library(parallel)
workers <- makeCluster(3)
clusterExport(workers, "slow_sum")
y <- parLapply(X, slow_sum, cl=workers) # 1 minute

This can be parallelized on Unix & macOS (becomes non-parallel on Windows) as:

library(parallel)
y <- mclapply(X, slow_sum, mc.cores=3) # 1 minute

4

PROBLEM: Different APIs for different
parallelization strategies
Developer:

● Which parallel API should I use?

● What operating systems are users
running?

● I don’t have Windows; can’t be bothered

● - Hmm… It should work?!?
- Oh, I forgot to test on macOS.

User:

● I wish this awesome package
could parallelize on Windows :(

● - Weird, others say it works for
them but for me it doesn't!?

5

Welcome to the Future

6

R package: future
● "Write once, run anywhere"
● 100% cross platform
● A simple unified API
● Easy to install (< 0.5 MiB total)
● Very well tested, lots of CPU mileage

Other key strengths:

● automatically exports global variables
● automatically relays:

○ stdout
○ conditions, e.g. messages and warnings

● works with any type of parallel backends

future

parallel globals

7

A Future is ...
● A future is an abstraction for a value that will be available later
● The value is the result of an evaluated expression
● The state of a future is either unresolved or resolved

Friedman & Wise (1976, 1977), Hibbard (1976), Baker & Hewitt (1977)

An R assignment:

v <- expr

Future API:

f <- future(expr)
v <- value(f)

v %<-% expr

8

Example: Sum of 1:100

> slow_sum(1:100) # 2 minutes
[1] 5050

> a <- slow_sum(1:50) # 1 minute
 > b <- slow_sum(51:100) # 1 minute
> a + b
[1] 5050

9

Example: Sum of 1:50 and 51:100 in parallel
> library(future)
> plan(multiprocess) # parallelize on local computer

> fa <- future(slow_sum(1:50)) # ~0 seconds
> fb <- future(slow_sum(51:100)) # ~0 seconds
> mean(1:3)
[1] 2

> a <- value(fa) # blocks until ready
> b <- value(fb)
> a + b
[1] 5050

10

User chooses how to parallelize - many options
plan(sequential)

plan(multiprocess)

plan(cluster, workers=c("n1", "n2", "n3"))

plan(cluster, workers=c("n1", "m2.uni.edu", "vm.cloud.org"))

plan(batchtools_slurm) # on a Slurm job scheduler

plan(future.callr::callr) # locally using callr

...

11

Building things using the core future blocks
f <- future(expr) # create future
r <- resolved(f) # check if done
v <- value(f) # wait & get result

12

A parallel version of lapply()
#' @importFrom future future value
parallel_lapply <- function(X, FUN, ...) {
 # Create futures
 fs <- lapply(X, function(x) future(FUN(x, ...))
 # Collect their values
 lapply(fs, value)
}

> plan(multiprocess)
> X <- list(a = 1:50, b = 51:100, c = 101:150)
> y <- parallel_lapply(X, slow_sum) # 1 minute
> str(y)
List of 4
 $ a: int 1275
 $ b: int 3775
 $ c: int 6275 13

R package: future.apply
● Futurized version of base R's lapply(), vapply(), replicate(), …
● ... on all future-compatible backends
● Load balancing ("chunking")
● Proper parallel random number generation

 y <- lapply(X, slow_sum)
 y <- future_lapply(X, slow_sum)

 plan(multiprocess)
 plan(cluster, workers=c("n1", "n2", "n3"))
 plan(batchtools_slurm)
 ...

● Other higher-level packages: foreach w/ doFuture, and furrr
14

WISH: Progress bars?
ME:

15

How do we communicate progress from workers to main R?

● A progress bar is displayed in our main R session
● Our parallel code may be executed on external machines

internet

n1.remote.org

n2.remote.org

Progress bars + parallel processing = complicated

laptop

???

16

How to make sure it works the same everywhere?

● Futures must work the same regardless how and if you parallelize
● We don’t know how and where users will parallelize

Progress bars prevent inclusive design
● Different packages display progress different
● Progress presentation is frozen at development
● User has little control over presentation
● Screen readers struggle with progress bars in the terminal

|========== | 40%

17

“Inclusive Design is a methodology, ..., that enables and draws on the
full range of human diversity. Most importantly, this means including
and learning from people with a range of perspectives.” (Microsoft)

Progress bars
updates

18

Separate APIs for developers and users

API for Developers API for End Users

p <- progressor(along=x)
p()

with_progress({ expr })

Developer decides:

where in the code progress
updates should be signaled

User decides:

if, when, and how progress
updates are presented

19

Developer focuses on providing updates
Package code

slow_sum <- function(x) {

 sum <- 0
 for (k in seq_along(x)) {
 Sys.sleep(0.1)
 sum <- sum + x[k]

 }
 sum
}

User

> x <- 1:10
> y <- slow_sum(x)
> y
[1] 55

progress updates
> with_progress(y <- slow_sum(x))
|======= | 40%

20

Package code

slow_sum <- function(x) {
 p <- progressor(along=x)
 sum <- 0
 for (k in seq_along(x)) {
 Sys.sleep(0.1)
 sum <- sum + x[k]
 p(paste("Add", x[k]))
 }
 sum
}

User choses how progress is presented
without progress updates
x <- 1:10
y <- slow_sum(x)

handlers(“beepr”)
with_progress(y <- slow_sum(x))

♫ ♪ ♪ ♪ … ♫

handlers(“txtprogressbar”)
with_progress(y <- slow_sum(x))
|========= | 40%

handlers(“progress”, “beepr”)
with_progress(y <- slow_sum(x))
[======>-----------] 40% Add 4

♫ ♪ ♪ ♪ … ♫
handlers(“progress”)
with_progress(y <- slow_sum(x))
[======>-----------] 40% Add 4

Easy to develop new ones:
handlers(“rstudio”)
handlers(“shiny”)
handlers(“pushbullet”)

21

with_progress({
 p <- progressor(along=x)
 y <- future_lapply(x, function(i) {
 p()
 ...
 })
})

To be decided: Should future_lapply() and likes auto-signal progression?

with_progress({
 y <- future_lapply(x, function(i) { ... })
})

future + progressr - it just works

22

Exciting news: future + “v2” = should work

CRAN package progress:

 progress::progress_bar$new(...)

Gábor Csárdi has work in progress that will separate the Developer API
and the End-user API; [“PARAPHRASING”]

○ p <- progress$new(...)
○ p$tick() # signal a progress condition

This works because
futures are invariant to

the progress implementation!
23

Take home: future = worry-free parallelization
● "Write once, run anywhere" - your code is future proof
● Global variables - automatically taken care of
● Stdout, messages, warnings, progress - captured and relayed
● User can leverage their compute resource, e.g. compute clusters
● Atomic building blocks for higher-level parallelization APIs
● 100% cross platform code

24

Building a better future
I 💜 feedback, bug reports, and suggestions

@HenrikBengtsson
HenrikBengtsson/future

Thank you all!

Acknowledgments:
● Organizers, Volunteers, and Sponsors
● R Core, CRAN, devels, and users!
● R Consortium
● Gábor Csárdi

