Future: Friendly Parallel and Distributed Processing in R for Everyone

Henrik Bengtsson
Univ of California, San Francisco

@HenrikBengtsson
HenrikBengtsson/future
jottr.org

Acknowledgments
- SatRday LA 2019 - Organizers, Volunteers, and Sponsors
- R Core, CRAN, devels, and users!
- R Consortium

A 40-minute presentation, SatRday LA 2019, Los Angeles, 2019-04-06
Why do we parallelize software?

Parallel & distributed processing can be used to:

1. **speed up processing** (wall time)
2. **lower memory footprint** (per machine)
3. **avoid data transfers** (compute where data lives)
4. Other reasons, e.g. asynchronous UI/UX
Concurrent in R

```r
X <- list(a = 1:50, b = 51:100, c = 101:150, d = 151:200)

y <- list()
y$a <- sum(X$a)
y$b <- sum(X$b)
y$c <- sum(X$c)
y$d <- sum(X$d)

y <- list()
for (name in names(X)) y[[name]] <- sum(X[[name]])

y <- lapply(X, FUN = sum)
```
How do we parallelize in base R?

X <- list(a = 1:50, b = 51:100, c = 101:150, d = 151:200)
y <- lapply(X, FUN = slow_sum) # 4 minutes

This can be parallelized on Unix & macOS (becomes non-parallel on Windows) as:

y <- parallel::mclapply(X, FUN = slow_sum, mc.cores = 4) # 1 minute

To parallelize also on Windows, we can do:

library(parallel)
workers <- makeCluster(4)
clusterExport(workers, "slow_sum")
y <- parLapply(workers, X, fun = slow_sum) # 1 minute
PROBLEM: Different APIs for different parallelization strategies

Developer

- "Which parallel API should I use?"
- "What operating systems are users running?"
- "It should work ... Oh, I forgot to test on macOS."

User

- "Weird, others say it work for them but for me it doesn't!"
- "I wish this awesome package could parallelize on Windows :(
- "I wish we could use a compute cluster in the cloud to speed this up"
PROBLEM: Code clutter + error prone

```r
#' @import parallel
my_fun <- function(X, ncores = 1) {
  if (ncores == 1) {
    y <- lapply(X, FUN = my_sum)
  } else {
    if (.Platform$OS.type == "windows") {
      workers <- makeCluster(ncores)
      on.exit(stopWorkers(workers))
      clusterExport(workers, "slow_sum")
      y <- parLapply(workers, X, fun = slow_sum)
    } else {
      y <- mclapply(X, FUN = my_sum, mc.cores = ncores)
    }
  }
  y
}
```
SOLUTION: Encapsulate these problems

```r
library(foreach)
doMC::registerDoMC(4)  # User chooses how to parallelize

my_fun <- function(X) {
  foreach(x = X) %dopar% { slow_sum(x) }
}

workers <- parallel::makeCluster(4)  # Alternative parallel backend
doParallel::registerDoParallel(workers)

Error in { : task 1 failed - 'could not find function "slow_sum"'

Whoops, we forgot to export `slow_sum()` to background sessions;

```r
 foreach(x = X, .export = "slow_sum") %dopar% { slow_sum(x) }
```
The Future ...
A Future is ...

- A **future** is an abstraction for a **value** that will be **available later**
- The value is the **result of an evaluated expression**
- The **state of a future** is **unevaluated** or **evaluated**

Standard R:  

```r
v <- expr
```

Future API:  

```r
f <- future(expr)
v <- value(f)
```
Example: Sum of 1:100

```r
> slow_sum(1:100) # 2 minutes
[1] 5050

> a <- slow_sum(1:50) # 1 minute
> b <- slow_sum(51:100) # 1 minute
> a + b
[1] 5050
```
Example: Sum of 1:50 and 51:100 in parallel

```r
> library(future)
> plan(multiprocess)

> fa <- future(slow_sum(1:50)) # ~0 seconds
> fb <- future(slow_sum(51:100)) # ~0 seconds
> 1:3
[1] 1 2 3

> value(fa)
[1] 1275
> value(fb)
[1] 3775

> value(fa) + value(fb)
[1] 5050
```
Two alternative syntaxes

Standard R:

\[ v <- \text{expr} \]

Future API (explicit):

\[ f <- \text{future}(\text{expr}) \]
\[ v <- \text{value}(f) \]

Future API (implicit):

\[ v \ %<-% \ \text{expr} \]
Example: Sum of 1:50 and 51:100 in parallel

```r
> library(future)
> plan(multiprocess)

> a %<-% slow_sum(1:50) # ~0 seconds
> b %<-% slow_sum(51:100) # ~0 seconds
> 1:3
[1] 1 2 3
>
```
Example: Sum of 1:50 and 51:100 in parallel

```r
> library(future)
> plan(multiprocess)

> a %<-% slow_sum(1:50) # ~0 seconds
> b %<-% slow_sum(51:100) # ~0 seconds
> 1:3
[1] 1 2 3

> a + b
[1] 5050
```
Many ways to resolve futures

```r
plan(sequential)
plan(multiprocess)
plan(cluster, workers = c("n1", "n2", "n3"))
plan(cluster, workers = c("remote1.org", "remote2.org"))
...

> a <- slow_sum(1:50)
> b <- slow_sum(51:100)
> a + b
[1] 5050
```
R package: future

- "Write once, run anywhere"
- A simple **unified API** ("interface of interfaces")
- **100% cross platform**
- **Easy to install** (< 0.5 MiB total)
- **Very well tested, lots of CPU mileage, production ready**

---

<table>
<thead>
<tr>
<th>&lt; Future API &gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>future(), value(), %&lt;-%, ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>future</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
</tr>
<tr>
<td>snow</td>
</tr>
</tbody>
</table>
Why a Future API?

- The Future API encapsulates heterogeneity
  - fewer decisions for developer to make
  - more power to the end user

- Motto: **Developer decides what to parallelize - user decides how to**

- Provides **atomic building blocks**:
  - `f <- future(expr), v <- value(f), ...`

  for richer parallel constructs, e.g. 'foreach', 'future.apply', ...

- **Automatic support for new backends**, e.g. 'future.callr', 'future.batchtools', 'future.cluster mq', ...
Why a Future API?  99% Worry Free

- **Globals & Packages**: automatically **identified & exported**
- **Static-code inspection** by walking the abstract syntax tree (AST)

```r
x <- rnorm(n = 100)
f <- future({ slow_sum(x) })
```

Globals identified and exported to background R worker:

1. **`slow_sum()`** - a function (also searched recursively)
2. **`x`** - a numeric vector of length 100

**Globals & packages can also be manually specified**
Building things using core future building blocks

f <- future(expr)  # create future
r <- resolved(f)   # check if done
v <- value(f)      # wait & get result

12 / 33
Building things using core future building blocks

```r
#' @import future
parallel_lapply <- function(X, fun, ...) {
Create futures
fs <- lapply(X, function(x) {
 future(fun(x, ...))
})

Collect their values
lapply(fs, value)
}

> plan(multiprocess)
> X <- list(a = 1:50, b = 51:100, c = 101:150, d = 151:200)
> y <- parallel_lapply(X, slow_sum)
> str(y)
List of 4
$ a: int 1275
$ b: int 3775
$ c: int 6275
$ d: int 8775
```
Frontend: future.apply

- Futurized version of base R's `lapply()`, `vapply()`, `replicate()`, ...
- ... on all future-compatible backends
- Load balancing ("chunking")
- Proper parallel random number generation

```
y <- lapply(X, slow_sum)
```

<table>
<thead>
<tr>
<th><code>future_lapply()</code>, <code>future_vapply()</code>, <code>future_replicate()</code>, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt; Future API &gt;</code></td>
</tr>
<tr>
<td>&quot;wherever&quot;</td>
</tr>
</tbody>
</table>
Frontend: future.apply

- Futurized version of base R's `lapply()`, `vapply()`, `replicate()`, ...
- ... on all future-compatible backends
- Load balancing ("chunking")
- Proper parallel random number generation

```
future_lapply(), future_vapply(), future_replicate(), ...

< Future API >

"wherever"
```

```
y <- future_lapply(X, slow_sum)
```

- `plan(multiprocess)`
- `plan(cluster, workers = c("n1", "n2", "n3")->)
- `plan(batchtools_sge)`
Frontend: furrr (Davis Vaughan)

- Futurized version of purrrs R's `map()`, `map2()`, `modify()`, ...
- ... on all future-compatible backends

```
future_map(), future_map2(), future_modify(), ...
< Future API >
"wherever"
```

```r
y <- purrr::map(X, slow_sum)
```
Frontend: furrr (Davis Vaughan)

- Futurized version of purrrs R's `map()`, `map2()`, `modify()`, ...
- ... on all future-compatible backends

```r
future_map(), future_map2(), future_modify(), ...
```

```
< Future API >

"wherever"
```

```r
y <- future_map(X, slow_sum)
```
Frontend: doFuture

- A **foreach** adapter on top of the Future API
- Foreach on **all future-compatible backends**

```
doFuture::registerDoFuture()
plan(multiprocess)
y <- foreach(x = X) %dopar% { slow_sum(x) }
```
~1,400 packages can now parallelize on HPC

caret, gam, glmnet, plyr, ... (1,400 pkgs)

foreach API

<table>
<thead>
<tr>
<th>doMC</th>
<th>doParallel</th>
<th>doSNOW</th>
<th>doMPI</th>
<th>doFuture</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>snow</td>
<td>Rmpi</td>
<td>&lt; Future API &gt;</td>
<td>&quot;wherever&quot;</td>
</tr>
</tbody>
</table>

```
doFuture::registerDoFuture()
plan(future.batchtools::batchtools_sge)
library(caret)
model <- train(y ~ ., data = training)
```
High Performance Compute (HPC) clusters
Example: Genome sequencing project

- Sequencing of a human DNA ($3 \times 10^9$ nucleotides)
- 80 individuals
- Millions of short raw sequences need to be mapped to the human reference
- Alignment takes ~3 hours per individual
- Raw sequence data is ~200 GB per individual

```r
Find our 80 FASTQ files
fastq <- dir(pattern = "[.]fq$") # 200 GB each => 16 TB total

Align the to human genome
bam <- lapply(fastq, DNAseq::align) # 3 hours each
```

**Total processing time:** 80 * 3 = 240 hours = 10 days
Example: Genome sequencing project

- Sequencing of a human DNA (3 \times 10^9 \text{ nucleotides})
- 80 individuals
- Millions of short raw sequences need to be mapped to the human reference
- Alignment takes \sim 3 \text{ hours per individual}
- Raw sequence data is \sim 200 \text{ GB per individual}

```r
library(future.apply)
plan(multiprocess) ## 12-core machine

Find our 80 FASTQ files
fastq <- dir(pattern = "[.\]fq$") ## 200 GB each => 16 TB total

Align the to human genome
bam <- future_lapply(fastq, DNAseq::align) ## 3 hours each
```

Total processing time: 80 \times 3 / 12 = 20 \text{ hours}
Ad-Hoc Compute Clusters

A common setup in many departments:

- Two or more machines
- Manually SSH into each machine to launch scripts

Attributes:

- Works ok with a few people and fair usage
- Can easily be overloaded if too many users
- Hard to plan your jobs
Clusters with Job Queues

With too many nodes or users, ad-hoc clusters becomes cumbersome and hard to manage and control. **Better to use a HPC scheduler with a job queue:**

- Two or more machines
- Users submit jobs to a common job queue
- The system takes jobs on the queue and executes them on available machines / cores

Attributes:

- Works well with any number of users and machines
- Users do not have to worry about overloading the cluster; the cluster will wait to process the next job if all compute resources are busy running jobs
Example: Submit a job & watch the queue

```bash
#!/bin/env bash
#PBS -N my_htseq_align
#PBS -l mem=12gb

htseq_align $1 human.fa

$qsub htseq_align.pbs patient101.fq
$qsub htseq_align.pbs patient102.fq

$qstat

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use S</th>
</tr>
</thead>
<tbody>
<tr>
<td>606411</td>
<td>bedGraph</td>
<td>alice</td>
<td>46:22:22 R</td>
</tr>
<tr>
<td>606494</td>
<td>misosummary</td>
<td>alice</td>
<td>55:07:08 R</td>
</tr>
<tr>
<td>606641</td>
<td>Rscript</td>
<td>bob</td>
<td>37:18:30 R</td>
</tr>
<tr>
<td>607758</td>
<td>Exome_QS1_Som</td>
<td>charlie</td>
<td>06:20:23 R</td>
</tr>
<tr>
<td>607832</td>
<td>my_htseq_align</td>
<td>henrik</td>
<td>00:01:57 R</td>
</tr>
<tr>
<td>607833</td>
<td>my_htseq_align</td>
<td>henrik</td>
<td>- Q</td>
</tr>
</tbody>
</table>
```
**Backend: future.batchtools**

- **batchtools**: Map-Reduce API for **HPC schedulers**, e.g. LSF, OpenLava, SGE, Slurm, and TORQUE / PBS
- **future.batchtools**: **Future API** on top of **batchtools**

<table>
<thead>
<tr>
<th>&lt; Future API &gt;</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>future(), resolved(), value(), %&lt;-%, ...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>future</th>
<th>future.batchtools</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>batchtools</td>
</tr>
<tr>
<td></td>
<td>SGE, Slurm, TORQUE, ...</td>
</tr>
</tbody>
</table>

```r
< Future API >
future(), resolved(), value(), %<-%, ...

future | future.batchtools |
--------|-------------------|
parallel | batchtools |
| | SGE, Slurm, TORQUE, ... |
```
library(future.batchtools)
plan(batchtools_sge)

fastq <- dir(pattern = "\.[.]fq$")
bam <- future_lapply(fastq, DNaseq::align)  # 200 GB each; 80 files

## 3 hours each

$ qstat
<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time</th>
<th>Use</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>606411</td>
<td>bedGraph</td>
<td>alice</td>
<td>46:22:22</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>606638</td>
<td>future05</td>
<td>henrik</td>
<td>01:32:05</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>606641</td>
<td>Rscript</td>
<td>bob</td>
<td>37:18:30</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>606643</td>
<td>future06</td>
<td>henrik</td>
<td>01:31:55</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
library(future)
library(googleComputeEngineR)
vms <- gce_vm_cluster(cluster_size = 36)
plan(cluster, workers = as.cluster(vms))

data <- future_lapply(1:100, montecarlo_pi, B = 10e3)
pi_hat <- Reduce(calculate_pi, data)

print(pi_hat)
## 3.14159
Futures in the Wild ...
tasks <- drake_plan(
  raw_data = readxl::read_xlsx(file_in("raw-data.xlsx")),
  data = raw_data %>% mutate(Species = forcats::fct_inorder(Species)),
  hist = create_plot(data),
  fit = lm(Sepal.Width ~ Petal.Width + Species, data),
  report = rmarkdown::render(knitr_in("report.Rmd"),
    output_file = file_out("report.pdf"))
)
make(tasks, parallelism = "future", jobs = 2)
Shiny v1.1 (the one with async) is days away from release! Huge changes under the hood--it'd be a big help if you try out your app using `devtools::install_github("rstudio/shiny")` and let us know if anything breaks! #rstats

Joe Cheng @jcheng
6:40pm - 11 May 2018

```r
library(shiny)
future::plan("multiprocess")
...```
The Near Future ...
Improvements

- ☑ Capture and relay standard output
- ☑ Capture and relay messages and warnings
- ☑ Improved error reporting and tracebacks (more can be done)
- ☐ [50%] Benchmarking (time and memory)
- ☐ [20%] Hook functions, e.g. update progress bar when one future is resolved
- ☐ [20%] Killing futures
- ☐ [10%] Restarting failed futures
- ☐ [80%] future.tests - Unified test framework for all future backends
 - All parallel backends must support the Core Future API
 - Sponsored via an R Consortium grant

foreach

- ☐ [80%] HARMONIZATION: Identify globals using future
Roadmap

- Make future **truly pure "containers"** to be evaluated
 - One of the original design goals
 - Support for passing futures "asis" to wherever and whenever

- Specify **resource needs**, e.g. only pass future to a worker:
 - ... on the same file system
 - ... that has a GPU

- **Sandboxed** future backend, e.g. evaluate non-trusted code
Summary of features

- Unified API
- Portable code
- Worry-free
- Developer decides what to parallelize - user decides how to
- For beginners as well as advanced users
- Nested parallelism on nested heterogeneous backends
- Protects against recursive parallelism
- Easy to build new frontends
- Easy to add new backends
Building a better future

I ❤️ feedback, bug reports, and suggestions

@HenrikBengtsson
HenrikBengtsson/future
jottr.org

Thank you!
Appendix (Random Slides)
A1. Features - more details
A1.1 Well Tested

- Large number of unit tests
- System tests
- High code coverage (union of all platform near 100%)
- Cross platform testing
- CI testing
- Testing several R versions (many generations back)
- Reverse package dependency tests
- All backends highly tested
- Large of tests via doFuture across backends on example():s from foreach, NMF, TSP, glmnet, plyr, caret, etc.

R Consortium Infrastructure Steering Committee (ISC) Support Project

- **Backend Conformance Test Suite** - an effort to formalizing and standardizing the above tests into a unified go-to test environment.
A1.2 Nested futures

```r
fastq <- dir(pattern = "[.]fq$")

aligned <- listenv()
for (i in seq_along(fastq)) {
    aligned[[i]] %<-% {
        chrs <- listenv()
        for (j in 1:24) {
            chrs[[j]] %<-% DNAseq::align(fastq[i], chr = j)
        }
        merge_chromosomes(chrs)
    }
}
```

- plan(batchtools_sge)
- plan(list(batchtools_sge, sequential))
- plan(list(batchtools_sge, multiprocess))
A1.3 Lazy evaluation

By default all futures are resolved using eager evaluation, but the developer has the option to use lazy evaluation.

Explicit API:

```r
f <- future(..., lazy = TRUE)
v <- value(f)
```

Implicit API:

```r
v %<-% { ... } %lazy% TRUE
```
A1.4 False-negative & false-positive globals

Identification of globals from static-code inspection has limitations (but defaults cover a large number of use cases):

- False negatives, e.g. `my_fcn` is not found in `do.call("my_fcn", x)`. Avoid by using `do.call(my_fcn, x)`.
- False positives - non-existing variables, e.g. NSE and variables in formulas. Ignore and leave it to run-time.

```
x <- "this FP will be exported"
data <- data.frame(x = rnorm(1000), y = rnorm(1000))
fit %<-% lm(x ~ y, data = data)
```

Comment: ... so, the above works.
A1.5 Full control of globals (explicit API)

Automatic (default):

```r
x <- rnorm(n = 100)
y <- future({ slow_sum(x) }, globals = TRUE)
```

By names:

```r
y <- future({ slow_sum(x) }, globals = c("slow_sum", "x"))
```

As name-value pairs:

```r
y <- future({ slow_sum(x) }, globals = list(slow_sum = slow_sum, x = rnorm(n = 100)))
```

Disable:

```r
y <- future({ slow_sum(x) }, globals = FALSE)
```
A1.5 Full control of globals (implicit API)

Automatic (default):

```r
x <- rnorm(n = 100)
y %<-% { slow_sum(x) } %globals% TRUE
```

By names:

```r
y %<-% { slow_sum(x) } %globals% c("slow_sum", "x")
```

As name-value pairs:

```r
y %<-% { slow_sum(x) } %globals% list(slow_sum = slow_sum, x = rnorm(n = 100))
```

Disable:

```r
y %<-% { slow_sum(x) } %globals% FALSE
```
A1.6 Protection: Exporting too large objects

```r
x <- lapply(1:100, FUN = function(i) rnorm(1024 ^ 2))
y <- list()
for (i in seq_along(x)) {
  y[[i]] <- future( mean(x[[i]]) )
}
gives error: "The total size of the 2 globals that need to be exported for the future expression ('mean(x[[i]])') is 800.00 MiB. This exceeds the maximum allowed size of 500.00 MiB (option 'future.globals.maxSize'). There are two globals: 'x' (800.00 MiB of class 'list') and 'i' (48 bytes of class 'numeric')."
```

```r
for (i in seq_along(x)) {
  x_i <- x[[i]]  ## Fix: subset before creating future
  y[[i]] <- future( mean(x_i) )
}
```

Comment: Interesting research project to automate via code inspection.
A1.7 Free futures are resolved

Implicit futures are always resolved:

```r
a %<-% sum(1:10)
b %<-% { 2 * a }
print(b)
## [1] 110
```

Explicit futures require care by developer:

```r
fa <- future(sum(1:10))
a <- value(fa)
fb <- future(2 * a)
```

For the lazy developer - not recommended (may be expensive):

```r
options(future.globals.resolve = TRUE)
fa <- future(sum(1:10))
fb <- future(2 * value(fa))
```
A1.8 What's under the hood?

- **Future class** and corresponding methods:
 - abstract S3 class with common parts implemented, e.g. globals and protection
 - new backends extend this class and implement core methods, e.g. `value()` and `resolved()`
 - built-in classes implement backends on top the parallel package
A1.9 Universal union of parallel frameworks

<table>
<thead>
<tr>
<th>Feature</th>
<th>future</th>
<th>parallel</th>
<th>foreach</th>
<th>batchtools</th>
<th>BiocParallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Uniform API</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Extendable API</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Globals</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packages</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map-reduce ("lapply")</td>
<td>✓</td>
<td>✓</td>
<td>foreach()</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Load balancing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>For loops</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>While loops</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nested config</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recursive protection</td>
<td>✓</td>
<td>mc</td>
<td>mc</td>
<td>mc</td>
<td>mc</td>
</tr>
<tr>
<td>RNG stream</td>
<td>✓+</td>
<td>✓</td>
<td>doRNG</td>
<td>(planned)</td>
<td>SNOW</td>
</tr>
<tr>
<td>Early stopping</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traceback</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A2 Bells & whistles
A2.1 availableCores() & availableWorkers()

- **availableCores()** is a "nicer" version of `parallel::detectCores()` that returns the number of cores allotted to the process by acknowledging known settings, e.g.
 - `getOption("mc.cores")`
 - HPC environment variables, e.g. `NSLOTS`, `PBS_NUM_PPN`, `SLURM_CPUS_PER_TASK`, ...
 - `_R_CHECK_LIMIT_CORES_`

- **availableWorkers()** returns a vector of hostnames based on:
 - HPC environment information, e.g. `PE_HOSTFILE`, `PBS_NODEFILE`, ...
 - Fallback to `rep("localhost", availableCores())`

Provide safe defaults to for instance

```r
plan(multiprocess)
plan(cluster)
```
A2.2: makeClusterPSOCK()

future::makeClusterPSOCK():

- Improves upon parallel::makePSOCKcluster()
- Simplifies cluster setup, especially remote ones
- Avoids common issues when workers connect back to master:
 - uses SSH reverse tunneling
 - no need for port-forwarding / firewall configuration
 - no need for DNS lookup
- Makes option `-l <user>` optional (such that `~/.ssh/config` is respected)
- Automatically stop clusters when no longer needed, e.g. by garbage collector
- Automatically stop workers if set up of cluster fails; parallel::makePSOCKcluster() may leave background R processes behind
A2.3 HPC resource parameters

With 'future.batchtools' one can also specify computational resources, e.g. cores per node and memory needs.

```r
plan(batchtools_sge, resources = list(mem = "128gb"))
y %<-% { large_memory_method(x) }
```

Specific to scheduler: `resources` is passed to the job-script template where the parameters are interpreted and passed to the scheduler.

Each future needs one node with 24 cores and 128 GiB of RAM:

```r
resources = list(l = "nodes=1:ppn=24", mem = "128gb")
```
A2.4: Example: An academic cluster

One worker per compute node (6 workers total)

```r
nodes <- c("cauchy", "leibniz", "bolzano", "shannon", "euler", "hamming")
plan(cluster, workers = nodes)

## Find our 80 FASTQ files
fastq <- dir(pattern = "[.]fq$")
## 200 GB each

## Align the to human genome
bam <- listenv()
for (i in seq_along(fastq)) {
  bam[[i]] %<-% DNAseq::align(fastq[i])
  ## 3 hours each
}
```

- Total processing time: ~1.7 days = 40 hours
A2.5 Example: An academic cluster

Four workers per compute node (24 workers total)

```r
nodes <- c("cauchy", "leibniz", "bolzano", "shannon", "euler", "hamming")
plan(cluster, workers = rep(nodes, each = 4))

## Find our 80 FASTQ files
fastq <- dir(pattern = "\.[.]fq$")
## 200 GB each

## Align the to human genome
bam <- listenv()
for (i in seq_along(fastq)) {
  bam[[i]] %<-% DNAseq::align(fastq[i])
}

• **Total processing time:** ~0.4 days = 10 hours (cf. 40 hours and 10 days)
A2.6: Nested futures

E.g. one individual per machine **then** one chromosome per core:

- plan(list(tweak(cluster, workers = nodes), multiprocess))

```r
fastq <- dir(pattern = "[.]fq$")

bam <- listenv()
for (i in seq_along(fastq)) {
 ## One individual per worker
 bam[[i]] %<-% {
 chrs <- listenv()
 for (j in 1:24) {
 ## One chromosome per core
 chrs[[j]] %<-% DNAseq::align(fastq[i], chr = j)
 }
 merge_chromosomes(chrs)
 }
}
```
A3. More Examples
A3.1 Plot remotely - display locally

```r
> library(future)
> plan(cluster, workers = "remote.org")

Plot remotely
> g %<-% R.devices::capturePlot({
 filled.contour(volcano, color.palette = terrain.colors)
 title("volcano data: filled contour map")
})

Display locally
> g
```

![Filled contour map of volcano data](image)
A3.2 Profile code remotely - display locally

```r
> plan(cluster, workers = "remote.org")

> dat <- data.frame(
+ x = rnorm(50e3),
+ y = rnorm(50e3)
+)

Profile remotely
> p %<-% profvis::profvis({
+ plot(x ~ y, data = dat)
+ m <- lm(x ~ y, data = dat)
+ abline(m, col = "red")
+ })

Browse locally
> p
```
A3.3 *fiery* - flexible lightweight web server (Thomas Lin Pedersen)

"... framework for building web servers in R. ... from serving static content to full-blown dynamic web-apps"

```r
> app$on('request', function(server, ...) {
+ list(
+ status = 200L,
+ headers = list('Content-Type' = 'text/html'),
+ body = paste('This is indeed a test. You are number', server$get_data('visits'))
+)
+ })
> app$ignite(showcase = TRUE)
```

This is indeed a test. You are number 1
A3.4 "It kinda just works" (furrr = future + purrr)

```r
plan(multisession)
mtcars %>%
 split(.$cyl) %>%
 map(~ future(lm(mpg ~ wt, data = .x))) %>% values %>%
 map(summary) %>%
 map_dbl("r.squared")
4 6 8
0.5086326 0.4645102 0.4229655
```

Comment: This approach not do load balancing. I have a few ideas how support for this may be implemented in future framework, which would be beneficial here and elsewhere.
A4. Future Work
A4.1 Standard resource types

For any type of futures, the developer may wish to control:

- memory requirements, e.g. `future(..., memory = 8e9)`
- local machine only, e.g. `remote = FALSE`
- dependencies, e.g. `dependencies = c("R (>= 3.5.0)", "rio")`
- file-system availability, e.g. `mounts = "/share/lab/files"`
- data locality, e.g. `vars = c("gene_db", "mtcars")`
- containers, e.g. `container = "docker://rocker/r-base"`
- generic resources, e.g. `tokens = c("a", "b")`
- ...

Risk for bloating the Future API: Which need to be included? Don't want to reinvent the HPC scheduler and Spark.