
Future: Simple Async, Parallel &
Distributed Processing in R

Why and What’s New?

Henrik Bengtsson (@HenrikBengtsson)
University of California San Francisco, R Foundation, R Consortium

Parallelization should be simple

x <- 1:20

y <- lapply(x, slow)

 Main R session:

 1m: y[[1]] <- slow(x[1])

 2m: y[[2]] <- slow(x[2])

 …

20m: y[[20]] <- slow(x[20])

Time: 20 mins

x <- 1:20

y <- mclapply(x, slow, mc.cores=2)

 Parallel worker #1: Parallel worker #2:

 1m: y[[1]] <- slow(x[1]) y[[11]] <- slow(x[11])

 2m: y[[2]] <- slow(x[2]) y[[12]] <- slow(x[12])

 … …

10m: y[[10]] <- slow(x[10]) y[[20]] <- slow(x[20])

Time: 10 mins

Overwhelming to get started

● So many parallel API - which one should I choose?
- mclapply(), parLapply(), foreach(), …

● What operating systems should I support?
- I use Linux. Will work on Windows and macOS?

● Will it scale?

● Do I need to maintain two code bases - sequential and parallel?

● Error in { : task 1 failed - "object 'data' not found"

R package: future
● A simple, unifying solution for parallel APIs
● "Write once, run anywhere"
● 100% cross platform
● Easy to install (< 0.5 MiB total)
● Very well tested, lots of CPU mileage, used in production
● Things “just work”

Dan LaBar
@embiggenData

All we need is three building blocks

f <- future(expr) # evaluate in parallel
r <- resolved(f) # check if done
v <- value(f) # wait & get result

future_lapply <- function(X, FUN, ...) {
 futures <- lapply(X, function(x) future(FUN(x, ...))
 lapply(futures, value)
}

This was invented in 1975

Stay with your favorite coding style

Tidyverse style (purrr & furrr) [Hadley W, Davis V]

y <- x %>% map(slow)

y <- x %>% future_map(slow)

Base R style (R & future.apply)

y <- lapply(x, slow)

y <- future_lapply(x, slow)

Foreach style (foreach & doFuture) [Steve Weston]

y <- foreach(z = x) %do% slow(z)

y <- foreach(z = x) %dopar% slow(z)

User chooses how to parallelize
● sequential

plan(sequential)

● parallelize on local machine
plan(multisession)

● multiple local or remote computers, or cloud compute services
plan(cluster, workers=c("n1", "m2.uni.edu", "vm.cloud.org"))

● High-performance compute (HPC) cluster
plan(batchtools_slurm)

Your future code remains the same!

Worry-free but does it work?

8

On CRAN since 2015
Adoptions: drake, shiny (async), …

Tested on Linux, macOS, Solaris, Windows
Tested on old and new versions of R
Revdep checks on > 100 packages

All foreach, plyr, caret, glmnet, ...
example():s validated with all future backends

future.tests - conformance validation of
parallel backends
(supported by an R Consortium grant)

What’s new?

Output,
Warnings,

Errors

Output and warnings behave
consistently for all parallel backends
> x <- c(-1, 10, 30)

> y <- lapply(x, function(z) {

 message("z = ", z)

 log(z)

 })

z = -1

z = 10

z = 30

Warning message:

In FUN(X[[i]], ...) : NaNs produced

>

Output and warnings behave
consistently for all parallel backends
> x <- c(-1, 10, 30)

> y <- mclapply(x, function(z) {

 message("z = ", z)

 log(z)

 })

>

Output and warnings behave
consistently for all parallel backends
> x <- c(-1, 10, 30)

> y <- future_lapply(x, function(z) {

 message("z = ", z)

 log(z)

 })

z = -1

z = 10

z = 30

Warning message:

In FUN(X[[i]], ...) : NaNs produced

>

What’s new?

Progress Updates

progressr - Inclusive, Unifying API for Progress Updates

Works anywhere - including futures, purrr, lapply, foreach, for/while loops, ...

API for Developers:

p <- progressor(along=x)
p(msg)

Developer decides:

where in the code progress
updates should be signaled

API for Users:

with_progress({ expr })

User decides:

if, when, and how progress
updates are presented

Developer focuses on providing updates
Package code

snail <- function(x) {

 y <- sapply(x, function(z) {

 slow(z)
 }
 sum(y)
}

Package code

snail <- function(x) {
 p <- progressor(along=x)
 y <- sapply(x, function(z) {
 p(paste0("z=", z))
 slow(z)
 }
 sum(y)
}

User

> x <- 1:50
> with_progress(y <- snail(x))
[===============>--] 90% z=45

User decides how progress is presented
without progress updates
> x <- 1:50
> y <- snail(x)

> handlers(“progress”, “beepr”)
> with_progress(y <- snail(x))
[======>-----------] 40% z=20

♫ ♪ ♪ ♪ … ♫

> handlers(“beepr”)
> with_progress(y <- snail(x))

♫ ♪ ♪ ♪ … ♫

Works also with Shiny
withProgressShiny()

What’s new?
future + progressr = ❤

snail <- function(x) {
 p <- progressor(along=x)
 y <- future_sapply(x, function(z) {
 p(paste0("z=", z, " by ", Sys.getpid()))
 slow(z)
 })
 sum(y)
}

Now future supports live progress updates

R 4.0.0:
global calling handlers 🙏
<= with_progress() not needed

> handlers(“progress”, “beepr”)
> plan(multisession)
> with_progress(y <- snail(x))
[=>----------] 10% z=38 by 3001

♫ ♪

Take home: future = worry-free parallelization
● Developer: what to parallelize <-> User: how to parallelize
● Stay with your favorite coding style
● Automagic, e.g. globals, packages, output, warnings, errors, progress

github.com/HenrikBengtsson
@HenrikBengtsson

