Future: Parallel & Distributed Processing in R for Everyone

Henrik Bengtsson
University of California

@HenrikBengtsson
HenrikBengtsson/future
jottr.org

Acknowledgments
- eRum 2018
- R Consortium
- R Core, CRAN, derels & users!

A 20-minute presentation, eRum 2018, Budapest, 2018-05-16
Why do we parallelize software?

Parallel & distributed processing can be used to:

1. **speed up processing** *(wall time)*
2. **decrease memory footprint** *(per machine)*
3. **avoid data transfers**

Comment: I'll focuses on the first two in this talk.
Definition: Future

- A **future** is an abstraction for a **value** that will be **available later**
- The value is the **result of an evaluated expression**
- The **state of a future** is **unevaluated** or **evaluated**

Definition: Future

- A **future** is an abstraction for a **value** that will be **available later**
- The value is the **result of an evaluated expression**
- The **state of a future** is **unevaluated** or **evaluated**

Standard R:

\[
v \leftarrow \text{expr}
\]

Future API:

\[
f \leftarrow \text{future} (\text{expr})
v \leftarrow \text{value} (f)
\]
Example: Sum of 1:50 and 51:100 in parallel

```r
> library(future)
> plan(multiprocess)

> fa <- future( slow_sum( 1:50 ) )
> fb <- future( slow_sum( 51:100 ) )
> 1:3
[1] 1 2 3
> value(fa)
[1] 1275
> value(fb)
[1] 3775
> value(fa) + value(fb)
[1] 5050
```
Definition: Future

Standard R:

\[v <- expr \]

Future API (implicit):

\[v %<-% expr \]
Example: Sum of 1:50 and 51:100 in parallel

```
> library(future)
> plan(multiprocess)

> a %<-% slow_sum( 1:50 )
> b %<-% slow_sum(51:100)
> 1:3
[1] 1 2 3

> a + b
[1] 5050
```
Many ways to resolve futures

```r
plan(sequential)
plan(multiprocess)
plan(cluster, workers = c("n1", "n2", "n3"))
plan(cluster, workers = c("remote1.org", "remote2.org"))
...

> a %<-% slow_sum( 1:50 )
> b %<-% slow_sum(51:100)
> a + b
[1] 5050
```
R package: future

- "Write once, run anywhere"
- A simple **unified API** ("interface of interfaces")
- **100% cross platform**
- **Easy to install** (~0.4 MiB total)
- **Very well tested, lots of CPU mileage, production ready**

```
< Future API >

future(), value(), %<-%, ...

future

parallel  |  globals  |  (listenv)
---------|----------|---------
  snow    |   Rmpi   |   nws   | codetools
```
Why a Future API?

- Different parallel backends ↔ different APIs
- Choosing API/backend, limits user's options

```r
x <- list(a = 1:50, b = 51:100)
y <- lapply(x, FUN = slow_sum)

y <- parallel::mclapply(x, FUN = slow_sum)

library(parallel)
cluster <- makeCluster(4)
y <- parLapply(cluster, x, fun = slow_sum)
stopCluster(cluster)
```
Why a Future API?

Solution: "interface of interfaces"

- The Future API encapsulates heterogeneity
 ○ fever decisions for developer to make
 ○ more power to the end user

- Philosophy:
 ○ developer decides what to parallelize - user decides how to

- Provides **atomic building blocks** for richer parallel constructs, e.g. 'foreach' and 'future.apply'

- Easy to implement new backends, e.g. 'future.batchtools' and 'future.callr'
Why a Future API?

- **Globals**: automatically **identified & exported**
- **Packages**: automatically **identified & exported**
- **Static-code inspection** by walking the AST

```r
x <- rnorm(n = 100)
y <- future({ slow_sum(x) })
```

Globals identified and exported:

1. **slow_sum()** - a function (also searched recursively)
2. **x** - a numeric vector of length 100

Globals & packages can be specified manually too
High Performance Compute (HPC) clusters
Backend: future.batchtools

- **batchtools**: Map-Reduce API for **HPC schedulers**, e.g. LSF, OpenLava, SGE, Slurm, and TORQUE / PBS
- **future.batchtools**: **Future API** on top of **batchtools**

```
< Future API >

<table>
<thead>
<tr>
<th>future</th>
<th>future.batchtools</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>batchtools</td>
</tr>
</tbody>
</table>

| SGE, Slurm, TORQUE, ... |
```
Backend: future.batchtools

```r
> library(future.batchtools)
> plan(batchtools_sge)

> a %<-% slow_sum(1:50)
> b %<-% slow_sum(51:100)
> a + b
[1] 5050
```
Real Example: DNA Sequence Analysis

- DNA sequences from 100 cancer patients
- 200 GiB data / patient (~ 10 hours)

```r
raw <- dir(pattern = "\.[fq]$")
aligned <- listenv()
for (i in seq_along(raw)) {
  aligned[[i]] %<-% DNAseq::align(raw[i])
}
aligned <- as.list(aligned)
```

- `plan(multiprocess)`
- `plan(cluster, workers = c("n1", "n2", "n3"))`
- `plan(batchtools_sge)`

Comment: The use of `listenv` is non-critical and only needed for implicit futures when assigning them by index (instead of by name).
Building on top of Future API
Frontend: future.apply

- Futurized version of base R's `lapply()`, `vapply()`, `replicate()`, ...
- ... on all future-compatible backends

```
future_lapply(), future_vapply(), future_replicate(), ...

< Future API >

"wherever"
```

```
aligned <- lapply(raw, DNAseq::align)
```
Frontend: future.apply

- Futurized version of base R's `lapply()`, `vapply()`, `replicate()`, ...
- ... on all future-compatible backends

```r
aligned <- future_lapply(raw, DNAseq::align)
```

- `plan(multiprocess)`
- `plan(cluster, workers = c("n1", "n2", "n3"))`
- `plan(batchtools_sge)`
Frontend: doFuture

- A **foreach** adapter on top of the Future API
- Foreach on **all future-compatible backends**

<table>
<thead>
<tr>
<th>foreach API</th>
<th>doParallel</th>
<th>doMC</th>
<th>doSNOW</th>
<th>doMPI</th>
<th>doFuture</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>parallel</td>
<td>snow</td>
<td>Rmpi</td>
<td>< Future API ></td>
<td>"wherever"</td>
</tr>
</tbody>
</table>

```r
dofuture::registerDoFuture()
plan(batchtools_sge)
aligned <- foreach(x = raw) %dopar% {
  DNAseq::align(x)
}
```
1,200+ packages can now parallelize on HPC

caret, gam, glmnet, plyr, ... (1,200 pkgs)

foreach API

<table>
<thead>
<tr>
<th>doMC</th>
<th>doParallel</th>
<th>doSNOW</th>
<th>doMPI</th>
<th>doFuture</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>snow</td>
<td>Rmpi</td>
<td>< Future API ></td>
<td>"wherever"</td>
</tr>
</tbody>
</table>

```
doFuture::registerDoFuture()
plan(future.batchtools::batchtools_sge)

library(caret)
model <- train(y ~ ., data = training)
```
Futures in the Wild
Frontend: *drake* - A Workflow Manager

```r
tasks <- drake_plan(
  raw_data = readxl::read_xlsx(file_in("raw-data.xlsx")),

  data = raw_data %>% mutate(Species = forcats::fct_inorder(Species)) %>% select(-X__1),

  hist = ggplot(data, aes(x = Petal.Width, fill = Species))
    + geom_histogram(),

  fit = lm(Sepal.Width ~ Petal.Width + Species, data),

  rmarkdown::render(knitr_in("report.Rmd"),
    output_file = file_out("report.pdf"))
)

future::plan("multiprocess")
make(tasks, parallelism = "future")
```
Shiny v1.1 (the one with async) is days away from release! Huge changes under the hood--it'd be a big help if you try out your app using `devtools::install_github("rstudio/shiny")` and let us know if anything breaks! #rstats

Joe Cheng @jcheng
6:40pm - 11 May 2018

```r
library(shiny)
future::plan("multiprocess")
...
```
Summary of features

- Unified API
- Portable code
- Worry-free
- Developer decides what to parallelize - user decides how to
- For beginners as well as advanced users
- Nested parallelism on nested heterogeneous backends
- Protects against recursive parallelism
- Easy to add new backends
- Easy to build new frontends
In the near future ...

- Capturing standard output
- Benchmarking (time and memory)
- Killing futures
Building a better future

I ❤️ feedback, bug reports, and suggestions

@HenrikBengtsson
GitHub: HenrikBengtsson/future
jottr.org

Thank you!
Appendix (Random Slides)
A1. Features - more details
A1.1 Well Tested

- Large number of unit tests
- System tests
- High code coverage (union of all platform near 100%)
- Cross platform testing
- CI testing
- Testing several R versions (many generations back)
- Reverse package dependency tests
- All backends highly tested
- Large of tests via doFuture across backends on example()s from foreach, NMF, TSP, glmnet, plyr, caret, etc. (example link)

R Consortium Infrastructure Steering Committee (ISC) Support Project

- **Backend Conformance Test Suite** - an effort to formalizing and standardizing the above tests into a unified go-to test environment.
A1.2 Nested futures

```r
raw <- dir(pattern = "[.]fq$")

aligned <- listenv()
for (i in seq_along(raw)) {
  aligned[[i]] <- {
    chrs <- listenv()
    for (j in 1:24) {
      chrs[[j]] <- DNAseq::align(raw[i], chr = j)
    }
    merge_chromosomes(chrs)
  }
}

plan(batchtools_sge)
plan(list(batchtools_sge, sequential))
plan(list(batchtools_sge, multiprocess))
```
A1.3 Lazy evaluation

By default all futures are resolved using eager evaluation, but the developer has the option to use lazy evaluation.

Explicit API:

```r
f <- future(..., lazy = TRUE)
v <- value(f)
```

Implicit API:

```r
v %<-% { ... } %lazy% TRUE
```
A1.4 False-negative & false-positive globals

Identification of globals from static-code inspection has limitations (but defaults cover a large number of use cases):

- False negatives, e.g. `my_fcn` is not found in `do.call("my_fcn", x)`. Avoid by using `do.call(my_fcn, x)`.

- False positives - non-existing variables, e.g. NSE and variables in formulas. Ignore and leave it to run-time.

```r
x <- "this FP will be exported"
data <- data.frame(x = rnorm(1000), y = rnorm(1000))fit %<-% lm(x ~ y, data = data)
```

Comment: ... so, the above works.
A1.5 Full control of globals (explicit API)

Automatic (default):

```r
x <- rnorm(n = 100)
y <- future({ slow_sum(x) }, globals = TRUE)
```

By names:

```r
y <- future({ slow_sum(x) }, globals = c("slow_sum", "x"))
```

As name-value pairs:

```r
y <- future({ slow_sum(x) }, globals = list(slow_sum = slow_sum, x = rnorm(n = 100)))
```

Disable:

```r
y <- future({ slow_sum(x) }, globals = FALSE)
```
A1.5 Full control of globals (implicit API)

Automatic (default):

```r
x <- rnorm(n = 100)
y %<-% { slow_sum(x) } %globals% TRUE
```

By names:

```r
y %<-% { slow_sum(x) } %globals% c("slow_sum", "x")
```

As name-value pairs:

```r
y %<-% { slow_sum(x) } %globals% list(slow_sum = slow_sum, x = rnorm(n = 100))
```

Disable:

```r
y %<-% { slow_sum(x) } %globals% FALSE
```
A1.6 Protection: Exporting too large objects

```r
x <- lapply(1:100, FUN = function(i) rnorm(1024 ^ 2))
y <- list()
for (i in seq_along(x)) {
  y[[i]] <- future( mean(x[[i]]) )
}
gives error: "The total size of the 2 globals that need to be exported for the future expression ('mean(x[[i]])') is 800.00 MiB. This exceeds the maximum allowed size of 500.00 MiB (option 'future.globals.maxSize'). There are two globals: 'x' (800.00 MiB of class 'list') and 'i' (48 bytes of class 'numeric')."

for (i in seq_along(x)) {
  x_i <- x[[i]]  ## Fix: subset before creating future
  y[[i]] <- future( mean(x_i) )
}
```

Comment: Interesting research project to automate via code inspection.
A1.7 Free futures are resolved

Implicit futures are always resolved:

```r
a <- %<-% sum(1:10)
b <- %<-% { 2 * a }
print(b)
## [1] 110
```

Explicit futures require care by developer:

```r
fa <- future( sum(1:10) )
a <- value(fa)
fb <- future( 2 * a )
```

For the lazy developer - not recommended (may be expensive):

```r
options(future.globals.resolve = TRUE)
fa <- future( sum(1:10) )
fb <- future( 2 * value(fa) )
```
A1.8 What's under the hood?

- **Future class** and corresponding methods:
 - abstract S3 class with common parts implemented, e.g. globals and protection
 - new backends extend this class and implement core methods, e.g. `value()` and `resolved()`
 - built-in classes implement backends on top the parallel package
A1.9 Universal union of parallel frameworks

<table>
<thead>
<tr>
<th>Feature</th>
<th>future</th>
<th>parallel</th>
<th>foreach</th>
<th>batchtools</th>
<th>BiocParallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Uniform API</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Extendable API</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Globals</td>
<td>✓</td>
<td></td>
<td>(✓)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packages</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map-reduce ("lapply")</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>foreach()</td>
<td>✓</td>
</tr>
<tr>
<td>Load balancing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>For loops</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>While loops</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nested config</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recursive protection</td>
<td>✓</td>
<td>mc</td>
<td>mc</td>
<td>mc</td>
<td>mc</td>
</tr>
<tr>
<td>RNG stream</td>
<td>✓+</td>
<td>✓</td>
<td>doRNG</td>
<td>(soon)</td>
<td>SNOW</td>
</tr>
<tr>
<td>Early stopping</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Traceback</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
A2 Bells & whistles
A2.1 availableCores() & availableWorkers()

- **availableCores()** is a "nicer" version of `parallel::detectCores()` that returns the number of cores allotted to the process by acknowledging known settings, e.g.
 - `getOption("mc.cores")`
 - HPC environment variables, e.g. `NSLOTS`, `PBS_NUM_PPN`, `SLURM_CPUS_PER_TASK`, ...
 - `_R_CHECK_LIMIT_CORES_

- **availableWorkers()** returns a vector of hostnames based on:
 - HPC environment information, e.g. `PE_HOSTFILE`, `PBS_NODEFILE`, ...
 - Fallback to `rep("localhost", availableCores())`

Provide safe defaults to for instance

```r
plan(multiprocess)
plan(cluster)
```
A2.2: makeClusterPSOCK()

`makeClusterPSOCK()`:

- Improves upon `parallel::makePSOCKcluster()`
- Simplifies cluster setup, especially remote ones
- Avoids common issues when workers connect back to master:
 - uses SSH reverse tunneling
 - no need for port-forwarding / firewall configuration
 - no need for DNS lookup
- Makes option `-l <user>` optional (such that `~/.ssh/config` is respected)
A2.3 HPC resource parameters

With 'future.batchtools' one can also specify computational resources, e.g. cores per node and memory needs.

```r
plan(batchtools_sge, resources = list(mem = "128gb"))
y <- { large_memory_method(x) }
```

Specific to scheduler: `resources` is passed to the job-script template where the parameters are interpreted and passed to the scheduler.

Each future needs one node with 24 cores and 128 GiB of RAM:

```r
resources = list(l = "nodes=1:ppn=24", mem = "128gb")
```
A3. More Examples
A3.1 Plot remotely - display locally

```r
> library(future)
> plan(cluster, workers = "remote.org")

## Plot remotely
> g <- R.devices::capturePlot(
    filled.contour(volcano, color.palette = terrain.colors)
    title("volcano data: filled contour map"))

## Display locally
> g
```

volcano data: filled contour map
A3.2 Profile code remotely - display locally

```r
> plan(cluster, workers = "remote.org")
> dat <- data.frame(
+   x = rnorm(50e3),
+   y = rnorm(50e3)
+ )
```

```
# Profile remotely
> p %<-% profvis::profvis({
+   plot(x ~ y, data = dat)
+   m <- lm(x ~ y, data = dat)
+   abline(m, col = "red"
+   
+ })
```

```
# Browse locally
> p
```

Sample Interval: 10ms 950ms
A3.3 *fiery* - flexible lightweight web server

"... framework for building web servers in R. ... from serving static content to full-blown dynamic web-apps"

```r
> app$on('request', function(server, ...) {
+   list(
+     status = 200L,
+     headers = list('Content-Type' = 'text/html'),
+     body = paste('This is indeed a test. You are number', server$get_data('visits'))
+   )
+ })
> app$ignite(showcase = TRUE)

This is indeed a test. You are number 1
```
plan(multisession)
mtcars %>%
 split(.\$cyl) %>%
 map(~ future(lm(mpg ~ wt, data = .x))) %>% values %>%
 map(summary) %>%
 map_dbl("r.squared")

4 6 8
0.5086326 0.4645102 0.4229655

Comment: This approach not do load balancing. I have a few ideas how support for this may be implemented in future framework, which would be beneficial here and elsewhere.
library(googleComputeEngineR)

vms <- lapply(paste0("node", 1:10),
 FUN = gce_vm, template = "r-base")

cl <- as.cluster(lapply(vms, FUN = gce_ssh_setup),
 docker_image = "henrikbengtsson/r-base-future")

plan(cluster, workers = cl)

data <- future_lapply(1:100, montecarlo_pi, B = 10e3)

pi_hat <- Reduce(calculate_pi, data)

print(pi_hat)
 ## 3.1415
A4. Future Work
A4.1 Standard resource types

For any type of futures, the developer may wish to control:

- memory requirements, e.g. `future(..., memory = 8e9)`
- local machine only, e.g. `remote = FALSE`
- dependencies, e.g. `dependencies = c("R (>= 3.5.0)", "rio")`
- file-system availability, e.g. `mounts = "/share/lab/files"`
- data locality, e.g. `vars = c("gene_db", "mtcars")`
- containers, e.g. `container = "docker:// rocker/r-base"`
- generic resources, e.g. `tokens = c("a", "b")`
- ...?

Risk for bloating the Future API: Which need to be included? Don't want to reinvent the HPC scheduler and Spark.