
Future: Simple, Friendly
Parallel Processing for R

@HenrikBengtsson
HenrikBengtsson
jottr.org

Henrik Bengtsson
University of California San Francisco
R Foundation, R Consortium
New York Open Statistical Programming Meetup on 2020-11-09

We parallelize software for various reasons

Parallel & distributed processing can be used to:

● speed up processing (wall time)

● lower memory footprint (per machine)

● Other reasons, e.g. asynchronous UI

2

3

History - What’s Already Available in R?

Concurrency in R

4

R comes with built-in parallelization

To parallelize also on Windows, we can do:

This can be parallelized on Unix & macOS (becomes non-parallel on Windows) as:

5

6

Things we need to be aware of

mclapply() - pros and cons

Pros:
 • works just like
 • comes with all R installations
 • no need to worry about global variables and loading packages

Cons:
 • forked processing => not supported on MS Windows
 • forked processing => does not work well with multi-threaded code
 and GUIs, e.g. may core dump RStudio

7

Use forked processing with care

R Core & mclapply author Simon Urbanek wrote on R-devel (April 2020):

“Do NOT use mcparallel() in packages except as a non-default option that
user can set ... Multicore is intended for HPC applications that need to use
many cores for computing-heavy jobs, but it does not play well with
RStudio and more importantly you [as the developer] don't know the
resource available so only the user can tell you when it's safe to use.”

8

https://stat.ethz.ch/pipermail/r-devel/2020-April/079384.html

parLapply() - pros and cons

Pros:
 • works just like l
 • comes with all R installations
 • works on all operating systems

Cons:
 • Requires manually loading of packages on workers
 • Requires manually exporting globals to workers

9

Average Height of Humans and Droids

…

10

parLapply() - packages must be loaded

11

parLapply() - packages must be loaded

12

parLapply() - globals must be exported

Error in checkForRemoteErrors(val) : 2 nodes produced
errors; first error: could not find function "avg_height"

13

parLapply() - globals must be exported

14

15

Design patterns found in CRAN packages

My customize sum function

16

v1. A first attempt on parallel support

17

v2. A slightly better approach

18

v3. An alternative approach

19

v4. Support also MS Windows

20

- Can you please add support for AAA parallelization too?

- While you’re at it, what about BBB parallelization?

21

v99: Phew … will this do?

22

What’s my
test coverage
now?

- There is this new, cool DDD parallelization method … ?

- …

- Still there?

23

PROBLEM: Different APIs for different
parallelization strategies
Developer:

● Which parallel API should I use?

● What operating systems are users
running?

● I don’t have Windows; can’t be bothered

● - Hmm… It should work?!?
- Oh, I forgot to test on macOS.

User:

● I wish this awesome package
could run in parallel

● I wish this awesome package
could parallelize on Windows :(

● - Weird, others say it works for
them but for me it doesn't!?

24

Welcome to the Future

25

R package: future
● "Write once, run anywhere"
● 100% cross platform
● Works with any type of parallel backends
● A simple unified API
● Easy to install (< 0.5 MiB total)
● Very well tested, lots of CPU mileage

“Low friction”:

● automatically exports global variables
● automatically relays output, messages, and warnings
● proper parallel random number generation (RNG)

26

Dan LaBar
@embiggenData

A Future is ...
● A future is an abstraction for a value that will be available later
● The state of a future is either unresolved or resolved
● The value is the result of an evaluated expression

Friedman & Wise (1976, 1977), Hibbard (1976), Baker & Hewitt (1977)

An R assignment: Future API:

v %<-% expr

27

Example: Sum of 1:100

28

Example: Sum of 1:50 and 51:100 in parallel

>

29

Example: Sum of 1:50 and 51:100 in parallel

30

User chooses how to parallelize - many options

31

Globals automatically identified (99% worry free)

Static-code inspection by walking the abstract syntax tree (AST):

=> globals & packages identified and exported to the worker:
 - - a function (also searched recursively)
 - - a numeric vector of length 100

Comment: Globals & packages can also be specified manually

32

Building things using the core future blocks

33

A parallel version of lapply()

34

R package: future.apply
● Futurized version of base R's lapply(), vapply(), replicate(), …
● ... on all future-compatible backends
● Load balancing ("chunking")
● Proper parallel random number generation

35

R package: furrr (Davis Vaughan)
● Futurized version of purrr’s , , , ...
● ... on all future-compatible backends
● Load balancing ("chunking")
● Proper parallel random number generation

36

R package: doFuture
● Futurized foreach adaptor
● ... on all future-compatible backends
● Load balancing ("chunking")

37

Stay with your favorite coding style

38

39

Output, Warnings, and Errors

Output and warnings behave
consistently for all parallel backends

40

Whether or not output is visible depends on operating system and
environment (e.g. terminal or RStudio)

● Output and conditions are
displayed just like

● This does not work when using
 or

Standard output is truly relayed

41

Conditions are truly relayed

42

43

Can I trust the future framework?

Future Backends

Future Frontends

Future API guarantees uniform behavior

44

Future API

future.apply furrr doFuture ...

parallel
(multicore,

multisession, local
& remote cluster)

callr
(local

parallelization)

batchtools
(HPC schedulers,
e.g. SGE, Slurm,

TORQUE)

...

- Backends conform to Future API
- Very well tested
- Developers don’t have to worry
- Users don’t have to worry

Large amounts of testing … all the time

45

On CRAN since 2015
Adoptions: drake, plumber, shiny (async), …

Tested on Linux, macOS, Solaris, Windows
Tested on old and new versions of R
Revdep checks on > 140 packages

All foreach, plyr, caret, glmnet, ...
:s validated with all future backends

future.tests - conformance validation of
parallel backends
(supported by an R Consortium grant)

46

Not everything can be parallelized

Some objects cannot be exported to another R process

47

plan(multisession)
file <- tempfile()
con <- file(file, open="wb")
cat("hello", file = con)
f <- future({ cat("world", file = con); 42 })
v <- value(f)
Error in cat("world", file = con) : invalid connection

Note, this is true for all parallelization frameworks. There’s no solution to this.

Non-exportable objects

48

For troubleshooting, ask the future framework to look for non-exportable objects:

options(future.globals.onReference = "error")
file <- tempfile()
con <- file(file, open="wb")
cat("hello", file = con)
f <- future({ cat("world", file = con); 42 })
Error: Detected a non-exportable reference ('externalptr')
in one of the globals ('con' of class 'file') used in the
future expression

Disabled by default because (i) some false positive, but also (ii) expensive.

Less obvious, non-exportable objects

49

library(xml2)
xml <- read_xml("<body></body>")
f <- future({ xml_children(xml) })
value(f)
Error: external pointer is not valid

str(xml)
List of 2
$ node:<externalptr>
$ doc :<externalptr>
- attr(*, "class")= chr [1:2] "xml_document" "xml_node"

50

Roadmap - what on the horizon?

Terminating futures, if backend supports it

51

If supported by the parallel backend, free up worker by terminating futures no
longer of interest, e.g.

plan(multisession)
f1 <- future({ very_slow(x) })
f2 <- future({ also_slow(x) })
if (resolved(f2)) {
 y <- value(f2)
 # First future no longer needed; attempt to terminate it
 discard(f1)
}

Bonus: Automatically register a finalize so that removed futures call discard()
on themselves when garbage collector.

Terminate, exit early from map-reduce calls

52

With terminate, we can also terminate useless futures in parallel map-reduce, and
then exit early, e.g.

plan(multisession)
X <- list(42, 31, "pi”, pi)
y <- future_lapply(X, slow)
Error in ...future.FUN(...future.X_jj, ...) :
non-numeric argument to mathematical function

Today:
The error is not thrown until all slow(41), slow(31), and slow(pi) finish

Idea:
As soon as the error is detected, terminate all running futures, and rethrow error

Exception handling on extreme events

53

If there is an extreme event such as a power outage of a machine where one of
the futures are currently resolved, the future framework detects this;

Exception handling on extreme events

54

We can handle these exception at the very lowest level:

Open questions:
● How to relaunch a future?
● How to restart a worker - whatever that means?
● How should this work for map-reduce APIs, e.g. future.apply and furrr?

Prepopulate workers with data

55

By design, the Future API does not have a
concept of a specific worker

56

There is no method for exporting an object to all workers. Thus, ‘huge’ is exported
to the workers twice:

Sticky globals - avoid repeated exports

57

● Might be ignored: Not all backends support caching
● Backend API: Identify which workers have verbatim object cached
● Workers might have garbage collected their cache
● What should happen if only cached on a busy worker?

Take home: future = 99% worry-free parallelization

● "Write once, run anywhere" - your code is future proof
● Global variables - automatically taken care of
● Stdout, messages, warnings, progress - captured and relayed
● User can leverage their compute resource, e.g. compute clusters
● Atomic building blocks for higher-level parallelization APIs
● 100% cross-platform code

58

Building a better future

I 💜 feedback, bug reports, and suggestions

Thank you all!

@HenrikBengtsson
HenrikBengtsson
jottr.org

60

Q & A

Q. Nested parallelization?

61

E.g. one individual per machine then one chromosome per core:

Q. Why not detectCores()?
Don’t hard-code the number of workers to parallelize, e.g.

This is a bad idea because:

● as a developer we do not know where the user will run this
● user might run to R processes calling at the same time
● there might be other users on the same machine
● might be called by another function already running in parallel

62

availableCores() instead of detectCores()

● may return
● uses all cores; ignores other settings
● two or more users doing this on the same machine, will overwhelm the CPUs

R Core & mclapply author Simon Urbanek wrote on R-devel (April 2020):
“Multi-core machines are often shared so using all detected cores is a very bad idea.
The user should be able to explicitly enable it, but it should not be enabled by default.”

● always returns >= 1
● defaults to but respects also other settings, e.g.

 HPC scheduler environment variables, …
● sysadms can set the default to a small number of cores via an env variable

63

https://stat.ethz.ch/pipermail/r-devel/2020-April/079384.html

Parallelize using all but one core?
A very common meme is to use all but cores

The idea is that we save one CPU core so we can keep working on the computer.

However, note that your code might run a single-core machine, which result in
ncores = 0. To account for this and the missing value, use:

But, again, it’s better to use:

64

Q. How to detect non-exportable globals?

65

Some objects only works in the R session where they were created. If exported to
another R process, they will either give an error when used, or garbage results.

There is no clear method for identify objects that fail when exported. However,
objects with “external pointer” (<externalptr>) used by native code often fail,
although not all of them (e.g. data.table object).

To detect external pointer and other types of “references”, the future package
(optionally) scans the globals using something like:

Q. Should I use doParallel or doFuture?

66

The foreach adaptor doParallel supports two types of parallel backends. Which one we
get how we call and from what operating system.

1. “cluster”: uses the machinery

2. “multicore”: uses the machinery

doFuture can parallelize like doParallel & more

67

The foreach adaptor doFuture supports any type of parallel backend that the future
framework support, including the two “cluster” and “multicore” that doParallel supports.
Here’s how they’re related:

doFuture doParallel

cluster

multicore

Extra features that comes with doFuture

68

There is no performance difference between doFuture and doParallel when using “multicore” or
“multisession” backends; they both rely on the same parallelization frameworks in the parallel package.

The main advantage of using the doFuture over doParallel is that standard output, messages, and
warnings are relayed to the main R session.

doFuture doParallel

Output is not relayed!

